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Self- formed straight rivers with equilibrium banks and 
mobile bed. Part 2. The gravel river 
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Rivers are capable of transporting their own bed material without altering their 
width. However, a naive extension of the threshoId theory of canals in coarse alluvium 
to straight reaches of gravel rivers leads to the stable-channel paradox: transport of 
bed material is incompatible with a stable width. In  this paper singular perturbation 
techniques are used to obtain a bed stress distribution which allows a mobile bed but 
immobile banks a t  bankfull or dominant discharge. This result is used to obtain 
regime relations for straight rivers with bed and banks composed of coarse gravel. 

The analysis, although dependent on a series of approximate assumptions for 
Reynolds-stress closure and sediment transport, provides reasonable agreement with 
data. 

1. Introduction 
Alluvial rivers possess channels that are self-formed by the interaction of water 

and sediment. They thus present a novel fluid flow problem in which one is asked to 
determine not only the flow in a given ‘container’, but also the geometry of the 
‘ container ’ itself. 

The general problem is the prediction of stable, morphologically active river 
channels, i.e. a channel that can transport most of the available sizes of its own bed 
material without immediately eroding or narrowing its banks. I n  part 1 (Parker 1978) 
the case of the suspendable sand-silt channeI was analysed, and stable channels were 
delineated in terms of a dynamic equilibrium between bank erosion and bank de- 
position. The present paper analyses the case of channels in which the bed and banks 
are composed of gravel of sufficient coarseness to preclude its suspension. It is shown 
that the banks can induce a lateral redistribution of stress such that the bed is mobile, 
although the banks are in static equilibrium. 

2. Natural coarse-gravel rivers 
A description of some of the salient features of rivers with a coarse-gravel bed and 

banks provides a basis for abstraction to a realistic but tractable model. The Athabasca 
River near Fort Assiniboine, Alberta, illustrated in figure 1 (plate 1),  provides an 
example of a large (mean discharge is 310 m3/s) river in coarse gravel. An analysis of 
the hydraulic and morphologic characteristics of this reach has been performed by 
Neil1 (1973). Both the bed and the banks are composed essentially of very coarse 
gravel. From bar samples it was found that D,, (sediment equivalent diameter such 
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FIGURE 2. Cross-section of a straight reach of the Athabasca 
River (from Neill 1973). 

that 90 % of a given sample is smaller) is 75 mm, D5, is 45 mm and D,, is somewhat 
less than 4 mm. Although the river lies in a deep postglacial valley, the valley is wide 
enough so that in many places the river flows through its own alluvium without 
impinging on the valley walls. In these places the river channel is self-formed. The 
presence of shifting bars illustrates that a t  large discharges the river is capable of 
transporting the majority of sizes of its bed material. However, the rate of transport 
of bed material appears to be small, and to be almost exclusively as bed load for sizes 
larger than Dl0. The river exhibits considerable shifting associated with alignment 
variation, but many cross-sections have remained stable through a series of floods, 
and the average characteristics of the reach appear to have been stable in historic 
time. A typical cross-section in a straight portion is given in figure 2. 

A parameter indicative of bed mobi1it)y is the Shields stress ?* based on reach and 
cross-sectional average properties, which is given by 

where D is the average depth, S is the average water surface slope, ps and p are, 
respectively, the sediment and water density and W = p,/p - 1 ( =  1-65 for natural 
material). Neill (1968) suggests an absolute lower bound for sediment movement in 
gravel of ?* = 0.03. On the Athabasca River, Neill finds that a t  a ‘dominant’ discharge 
of 2700 m3/s (somewhat below bankfull) T* is typically about 0.042. 

Thus, although sediment transport occurs, ?* does not exceed the critical value for 
movement by much. This observation, which is important to the present analysis, 
is found to be true for many (but not all) gravel rivers. Kellerhals (1963; see also 
Kellerhals 1967) has examined seven reaches of rivers in British Columbia, Canada. 
Four of the reaches are a t  the outlet of lakes, where it can be expected that sediment 
transport vanishes. For the three reaches in which sediment can be expected to be 
transported at higher discharges - Cariboo River a t  Quesnel Forks, Quesnel River at 
Lawless Creek and Chilko River a t  Henry’s Crossing - the value of ?* based on an 
arbitrary ‘dominant’ discharge was found to range no higher than about 0.043. 
Although Brush (1961) does not give information concerning bank material, moderate 
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FIGURE 1 .  Athabasca River near Whitecourt during spring breakup 
Photo coiirtesy of the Alberta Research ('oimcil. 
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Shields stresses are observed on most of the larger gravel-bed streams he surveyed in 
Pennsylvania, U.S.A.; Shaver Creek is typical, with values of ;?* of about 0.054. 

While streams with gravel beds which sustain much higher values of ?* can also be 
found (Hollingshead 1971), the case of near-critical Shields stress concurrent with 
sediment transport appears to represent a limiting case applying to  straight equi- 
librium reaches of rivers with beds and banks of loose gravel of similar size. 

Thus the case of a straight channel of symmetrical cross-section with bed and banks 
qomposed of loose similar gravel is analysed herein. Such a channel must be able to 
withstand bankfull or dominant discharges without bank erosion, even though sedi- 
ment is in transport on the bed. 

Self-formed gravel channels can be modelled in the laboratory with the use of 
coarse sand, as has been done by Wolman 8: Brush (1961); again i t  is found that 
straight channels with low but non-vanishing bed load and values of ?* of about 
0.040 are formed. The analysis applies to these channels as well in so far as the flow 
is hydraulically rough. 

3. Threshold theory of stable canals 
The only successful rational derivation of channel geometry available a t  present is 

that due to  Glover & Florey (1951), in which a canal cross-section of minimum area 
such that sediment is on the threshold of motion everywhere is determined. The 
analysis is not applicable to most natural rivers in that it predicts vanishing sediment 
transport. It will nevertheless prove useful to review a modified version due to  Lane, 
Lin & Liu (1959; as reported in Li, Simons 8: Stevens 1976). 

A symmetrical cross-section of width B and centre depth D, in uniformly distributed 
coarse alluvium is considered. The lateral co-ordinate y is measured from the centre 
of the channel. The time-averaged bed stress distribution, assumed to be critical 
everywhere, is r = r,(y) (figure 3), and depth is D(y) .  

The use of a time-averaged critical stress implies that, under the associated mean 
conditions, sediment does not move a t  some larger ‘effective’ stress ar,(y) the prob- 
ability of which is vanishingly small. The mean lift per unit area is Pr,, where ,8 z 0.85, 
and the ‘effective’ lift per unit area is taken to be a,&,. 

The appropriate form for the momentum balance €or equilibrium flow in a channel 
with depth D, and infinite width is 

where g is the acceleration due to  gravity. A number of naive formulations for mo- 
mentum balance in the channel illustrated in figure 3 exist. Perhaps the most complete 
is the area formula of Lundgren & Jonsson (1964), in which the resistive force r d P h  
on a portion of bed of longitudinal extent A x  and lateral arc length dP is balanced 
by the downstream component of the weight of the water with volume dAAr,  where 
dA is the cross-sectional area above dP bounded by normals to the bed (figure 4). 
It is thus found that 

5 

cos/3+fcosf?Dzg-)pgS, d2D 
dy 
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FIGURE 3. Definition diagram for derivation of threshold canal geometry. 
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FIGURE 4. Definition diagram outlining assumed channel geometry 
of straight reaches of coarse-gravel rivers. 

where B is the local lateral angle of inclination. This formula can be simplified con- 
siderably for appropriately wide channels. If Z = (2Dc/B)2, then for small Z the above 
formula can be expanded as 

Since cost3 = 1 + 0(2), it is found that the momentum balance may be written, to 

(2)  
lowest order, as 

The cosine term is inserted since it will allow closed-form integration to be performed 
shortly. 

Let P, be the bed porosity and ,LL be the submerged static coefficient of Coulomb 
friction. Furthermore let {el, e,, e,} be a set of orthogonal unit vectors such that 
el is downstream and tangential to the bed, e,  is outward and tangential to the bed, 
and e3 is upward and normal to the bed (figure 3).  The force balance on an arbitrary 
area of the bed surface one grain thick is considered. Particles are pulled downstream 
by fluid stress and inward under the influence of gravity (the analysis neglects 
secondary currents). The effective stress vector T,, tangential to the bed is 

7/pgSD = 1 +0(2). 

7 = pgDScost3. 

T,, = wC el -p9g (  1 - Pl) D,, sin 8 e,. 

T,, = - [p9g(  1 - PI)  D,, cos 8 - olp7,] e3. 

(3) 

The effective stress TEN normal to the bed is 

(4) 
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The condition for incipient motion is that  the Coulomb friction force should just 
balance the tangential erosive forces: 

l T E T l  = PITENI. ( 5 )  

At the centre, where y = 0,  8 = 0 ;  if T,, 5 T,(O), then from (5) 

-”) pggD,, 
Tco = a( 1 +pup) 

or in terms of critical Shields stress T:, = rc,/pBgD,, 

7 2  = -m/a +Pup). (6) 

For coarse sediment p is assumed to take the value 0.84, corresponding to  an angle 
of repose of 40°, and an appropriate value for PI is 0.35. The value of a corre- 
sponding to r:, = 0.03 is seen to be 10.6. 

Rearranging ( 5 )  according to ( 2 ) ,  (6) and the relation t a n 8  = -dD/dy  gives 

Two boundary conditions must be satisfied: 

D(0) = D,, D(4B) = 0. (8) 

Equation (7) is of first order, so the two boundary conditions overspecify the 
problem and imply a relation among D,, B ,  up and y.  The solution to (7) and (8) is 
found by direct integration: 

_ -  - -L [cos(p(”);~]-r] ,  
D, 1 - r  l + r  D, 

where r = Pp, For t.he vadues previously cited for P and p, T. = 0.20, a value small 
enough to  justify the approximation embodied in ( 2 ) .  

The critical-stress theory, in conjunction with an  appropriate resistance relation, 
allows complet,e delineation of the canal geometry of minimum cross-sectional area a t  
threshold conditions. If D,, and any two of the parameters D,, B, Q and S are specified, 
the other two parameters and the channel geometry can be calculated. 

An important point is that  for threshold channels the aspect ratio saf = B/D, is 
given by 

(10) d = 4.5. 

4. The stable-channel paradox 
The threshold theory of canals does not apply to most rivers in that no sediment 

transport occurs. The case where sediment is transported is now considered. The bed 
stress is calculated from the area formula (1). 

Some volumetric sediment load Q, is imposed on the river. I n  order for this load to 
be transported the stress ~ ( y )  must be greater than T&) for a finite range of values of 

5-2 
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y near the centre. Any grain thus put in motion will be subject not only to a down- 
stream force, but also to an inward force as well, as seen from (3). Thus grains are 
transported down the bank to the centre of the channel, and bank erosion is accom- 
plished. As long as a load is imposed bank erosion must continue and the channel must 
widen indefinitely. Conversely, if the channel is to be stable then the load must vanish. 
This was first delineated by Hirano (1973). 

In  short, sediment transport is incompatible with a stable channel. This is termed 
the ‘stable-channel paradox) since it indicates that stable rivers in coarse alluvium 
cannot exist. 

The paradox cannot be resolved by placing a stretch of constant depth 0, in 
between the two ‘bank regions’ as in figure 4. Since the ‘bank regions’ join the centre 
‘bed region’ smoothly, (I) indicates that if the stress is above critical on the bed 
region then it must be above critical somewhere on the bank region, and bank erosion 
will again occur. 

Asimple order-of-magnitude analysis, similar to that in part 1, can be used to 
show that lateral stresses induced by straight-channel secondary currents are typically 
much smaller than the lateral erosive stress due to gravity in (3).  It thus appears 
unlikely that secondary currents can be invoked directly to resolve the paradox. (They 
may, however, play an indirect role, as discussed in 5 5.) 

Li et al. (1976) have argued that very small cobble streams are in fact threshold 
channels of the type described by (9).  They circumvent, the stable-channel para- 
dox by arguing that any load consists of particles that are considerably (two to 
three times) smaller than the dominant size of the channel itself. Such a load could 
be called ‘throughput load’ since it is not related to the channel geometry. Two 
consequences of this assumption illustrate that its applicability to gravel rivers is 
limited. 

The first is that such a channel would be incapable of shifting; also, any bedforms 
must be composed of throughput load. Gravel rivers, however, usually show a pro- 
clivity for shifting (Kellerhals, Neil1 & Bray 1972). Data from, for example, the 
Athabasca River indicate that material coarser than the median bed material size is 
common on bars, and could only have been transported to such locations. 

The second consequence is that the aspect ratio .d should have a value of about 
4.5 at bankfull or dominant discharge. This value is unrealistically low for most cases 
of interest. For the Athabasca River near Fort Assiniboine, for example, the value of 
d on straight reaches a t  dominant discharge is in the range 40-65. 

The available evidence indicates that most gravel rivers are capable of maintaining 
grossly stable widths while transporting most of the available sediment sizes. This 
applies locally to straight reaches and globally to average cross-sections of long 
reaches, the averaging being introduced to eliminate the effect of changing alignment. 
The very existence of such rivers appears to be paradoxical. 

5. A resolution based on turbulent momentum transfer 
‘Paradoxes’ such as the stable-channel paradox are often resolved in terms of 

singular perturbation analysis (e.g. D’Alembert’s paradox). Such a resolution is 
proposed herein. 
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The geometry of figure 4 is considered. The channel has a total width B, a flat bed 
region of width B - B, where the depth is D,, and on either side of this a bank region 
of width iB,  where the depth varies smoothly from D, a t  the junction point A to 
zero a t  the bank. The y co-ordinate is measured from the channel centre. The arc 
length P and area A ( P )  are the quantities defined previously. 

The downstream velocity, and thus the momentum, is greater near the channel 
centre than near the banks. Turbulence can be expected to  produce a net lateral flux 
of longitudinal momentum from regions of high momentum to regions of low mo- 
mentum, i.e. from the centre region to  the bank region. This results in a deficit of bed 
stress compared with that predicted by (1) near the centre and a surfeit near the 
banks. It is this lateral transfer of momentum that is responsible for the maintenance 
of wall stress in rectangular flumes (Cruff 1965). 

Another, usually weaker, mechanism that can also induce lateral transfer of 
longitudinal momentum is embodied in straight-channel secondary currents, which 
typically consist of cells so oriented as to move longitudinal momentum into ' corners ' 
(the water margin in this case). 

In  order to  illustrate the process, the equation of longitudinal momentum balance, 
integrated along a normal to the bed, is considered. Let z be normal distance from the 
bed, D, = D/cos 8 be normal depth, ET and uf be, respectively, the mean and fluctuat- 
ing downstream flow velocities and V and v' be the mean and fluctuating cross-stream 
velocities in the direction of e2 (figure 4). It is found that 

Note, then, that the area mebhod (1) must be corrected for the lateral turbulent 
transport rate of downstream momentum 

DN - 
MT(P)  = S pu'v'dz 

0 

and the lateral transport rate of downstream momentum due to secondary currents 

Icl,(P) = puvaz. SoDN 
Lundgren & Jonsson (1964) suggest that M,(P) is the weaker of the two and that it 
may be neglected in a first-order analysis. This procedure is adopted herein. It is, 
however, noted that this point deserves further investigation. 

The lateral transport of longitudinal momentum i l l ,  is assumed to be directed 
towards the banks on the physical grounds outlined above, and must vanish in the 
centre (owing to symmetry) and a t  the banks (where the bed meets the water surface). 
It may be surmised to have the form given in figure 5 and when inserted into (1 1) gives 
the stress redistribution discussed above, which is illustrated in the same figure in 
terms of the stress depth 6(y) = r (y) /pgS. 

Such a stress distribution has the prerequisites for resolving the stable-channel 
paradox. The stress is observed to  be a smooth, monotonically decreasing function of 
y. By appropriately adjusting the channel depth, the stress could be a t  or below critical 
on the entire bank region, but would then increase to a value above critical on a t  least 
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FIGURE 5 .  (a) Lateral flux of downstream momentum MT as a function of lateral distance from 
channel centre. (6) Resulting stress redistribution in terms of stress depth 6(y). 

part of the bed region. Thus the banks would remain stable, even though sediment 
transport would occur on the bed. 

In order to make the problem amenable to quantitative analysis, it  is first necessary 
to close ( 1  1). Lundgren & Jonsson (1964) use two simple assumptions to accomplish 
this. The first, due to Leighly (1932), is that lines of vanishing cross-sectional shear 
stress and momentum flux are orthogonal to the isovels. The second states that the 
logarithmic rough-wall law appropriate for flat beds and pipes holds throughout the 
flow along normals to the bed. (This assumption was first introduced in a primitive 
form by Keulegan 1938.) Thus if u* = ( ~ / p ) *  and k is bed roughness, 

U(z)/u,  = 2.5 In (30zlk). (12) 

Both assumptions are known to be incorrect for many flows, and strictly apply only 
to the case of small lateral bed curvature. Some error may also be expected in applying 
the logarithmic law in the core region of the flow. 

The closure obtained for MT by Lundgren & Jonsson under these assumptions and 
the additional proviso of small lateral bed curvature is 

where 

and j = - D,  Dyy/[l + (D,)2]j is the dimensionless channel curvature. Equation (1  1) )  
expressed in terms of the stress depth 6 = r/pgX,  can then be written as 
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Equation ( 1 3 )  applies to the case of small lateral bed curvature j N 6 ,  where 
e = (2D,/BJ2. This suggests that the term of highest order in ( 1 3 )  is small, leading 
to an asymptotic expansion for 6 in e in which the lowest-order term is given by the 
area method: 

Such a scheme, which was used successfully by Lundgren & Jonsson in channels of 
the type of figure 3 ,  fails for the geometry of figure 4 because it predicts a discontinuity 
in 6 a t  the junction point A .  It thus cannot be used to resolve the stable-channel 
paradox. This non-uniform behaviour is due to the neglect of the highest-order 
derivative in (13) in the lowest-order approximation, and must be resolved with the 
use of singular perturbation techniques. The resulting solution can then be applied 
to the prediction of gravel-river geometry. 

6. Solution of Lundgren & Jonsson's equation 

and (13) reduces to 

where R, = Dc/k is the relative roughness. Since the stress profile is to be symmetric 
in y ,  the boundary condition [dS/dy],, must hold. A solution to (14) subject to this 
boundary condition is 

S/D, = 1 + B C O S ~  ( ~ l y / D , ) ,  

where ct = $ ( O ,  R,)-$. The constant c must be determined by matching this bed 
solution to a bank solution under the conditions that S and dS/dy be continuous a t  the 
junction point. 

It. is necessary to specify the depth profile before bank solutions can be obtained. 
On the right bank region of figure 4 ,  as the bank region is traversed from junction to 
bank y varies from J ( B  - B,) to $B and D must vary smoothly from D, to zero. Thus 
at the junction point the conditions 

I n  the bed region of the channel in figure 4 ,  the depth takes the constant value D, 

(14)  8 = D, + @( 0,  Rk) 0," d2S/dy2, 

(15) 

must be satisfied and at the water's edge the condition 

Dl,=gB = 0 ( 1 6 4  
must hold. Furthermore D ( y )  must be such that no bank erosion occurs. 

I n  non-dimensional form, the depth profile is expressed as 

where s = D/D,,  7 = y/&B,-  (1 - el)/el and el = BJB. The parameter 7 varies from 
0 to 1 and s varies from 1 to 0 as the bank region is traversed. The conditions (16) give 

Apart from these general conditions, the depth profile is left arbitrary a t  this point. 

s = f ( r ) ,  

f ( 0 )  = 1,  f ' ( 0 )  = 0, f(1) = 0,  (17) 

where the prime denotes differentiation with respect to 7. 
Equation ( 13) is now solved on the bank region in terms of an asymptotic expansion 

in E = (2D,/B,)2, a parameter estimating lateral bank curvature that is assumed to 
be small. I n  terms of the dimepsionless stress depth c = S/D,, (13 )  takes the form 

fl = s(1 +$E[(s,)2+sqqs]}+ Fd[$(0,RkS)S2a,]/d7+0(E2).  (18) 
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Equation (18) is of second order, and its general solution contains two free constants. 
Three boundary conditions apply. For smooth matching with the bed solution, u and 
uV must equal the corresponding values of the bed solution a t  the junction. Further- 
more IT must vanish at 7 = 1. These conditions allow evaluation of the two constants 
in the bank solution and the free constant 6 in the bed solution. 

It is seen that for small B the equation approximates to u N s. More formally, an 
asymptotic expansion of the form 

r = i7,+si7.,+... (19) 

8, = S, 51 = g [ s ( S V ) 2 + s 2 S V V ] + d [ ~ ( 0 , R , s ) s 2 s V ] / d ~ .  (20a, b )  

is assumed; substituting into (18)) it is found that 

An attempt to match this approximate solution with the bed solution fails. The only 
free constant is 6 so the two conditions of matched u and uV cannot be satisfied 
simultaneously, and non-uniform behaviour results a t  the junction. 

The problem is due to the fact that the approximate solution (20) is obtained a t  the 
expense of dropping all terms containing derivatives of the dependent variable 0- in 
(18). As the equation is of second order, two free constants which would allow matching 
are lost, and (20) cannot be valid everywhere. 

= 0 where the 
stress gradient u, is so steep that terms containing u,, are not negligible. Such a 
region is termed a boundary layer (but resembles Prandtl's boundary layer only in 
the mathematical sense, i.e. it is associated with non-uniform behaviour due to the 
neglect of the highest-order derivatives). 

The expansion which leads to non-uniform behaviour is conventionally termed the 
outer expansion; in this case (19) is the outer bank expansion and 7 is the outer variable. 

It is necessary to find an inner expansion valid in a thin layer located near 7 = 0. 
From dimensional considerations, the boundary layer is found to have thickness €4, 
and an appropriate inner variable is seen to be p = q/e* .  The inner expansion is of the 
form 

0 - =  0 - , + € I T 1 + . . . .  

Note that 

The equation for the stress depth becomes 

In particular, there must exist a thin region near the junction 

( 2 1 )  

s = f ( d p )  = 1 +&f,,(O)p2+0(c2). 

d2IT du  

dP2 dP 
0- = 1 - ey( 1 +p2) + { A  - sy[ZB + (2A + C ) p 2 ] }  - - 2 ey(2A + C) - + O(E2)) ( 2 2 )  

where y = -&f,,(O) ( y  is positive for the physically applicable case of an upward- 
curving bank region) and 

a = - s s , , [ ~  + ( s , )~] -* ,  b = R,s. 

From (21)  and ( 2 2 )  it  is found that 
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uo = C, ea* + C, e-up + 1. 

The inner bank solution must match with both the bed solution ('left matching') 
and the outer bank solution ('right matching'). I n  order to  facilitate left matching, 
the constant 6 in (15) is expanded asymptotically in E :  

137 

The solution to (23a) is 

O = O o + + c l +  .... 

Right matching (the outer expansion of the inner expansion must equal the inner 
expansion of the outer expansion) imposed to lowest order requires that C, = 0. Left 
matching (a  and up must be continuous) imposed to lowest order requires that 

(24) 
c = C, = 0, in which case 

Progressing to the next higher order, the general solution to (23 b )  is 

uo= 1. 

gl = e l e " p + ~ , e e - " p - y ( 1 + 2 ~ + p 2 ) .  

Again, right matching with ( g o b )  is satisfied if el = 0. The results of left matching are 

where 
I 1 

6 = - 
A4 €* *  

Thus the solution of (13) is complete to first order in c: on all regions of the bed. 

is unwarranted in that such terms were neglected in the derivation of (13). 
It should be noted that an extension of the perturbation scheme to higher orders 

The bed stress on the bed region is given to  first order by 

Since 6, y and A are positive for physically admissible cases, this equation indicates 
a stress deficiency on the bed region scaled by e,  which becomes progressively more 
severe as the bank region is approached. This is exactly the condition that has been 
postulated to a~llow the coexistence of bed sediment transport and stable banks in 
non-cohesive gravel channels. 

7. The bank region of a self-formed straight gravel river 
The lateral depth profile of the bank region of a straight gravel river a t  bankfull 

or dominant discharge must be one that specifies critical conditions everywhere, if 
the river is to be self-formed. This provides a means of evaluating the bank profile, 
heretofore left arbitrary except for certain general conditions. 

If stress is critical everywhere on the bank region, then u must satisfy the dimension- 
less form of (5), reduced with (6) : 
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where vc is the dimensionless critical stress at the junction point. But on all of the 
bank region except the boundary layer near the junction point, it  is seen from (20) 
that 

Note that cos 8 = 1 + O( E ) ,  so that to lowest order (27) can be written as CT = s cos 8. 
Inserting this into (26) and solving for s subject to the (overspecified) boundary 
conditions s(0)  = 1 and s(1) = 0, the solution is found to be 

(r = s+O(e).  (27) 

[cos (7 cos-lr) - r ] ,  (28) 
1 

1 - r  
$ = -  

Thus the threshold solution cited in 9 3 is recovered as the shape for the bank region. 
The value of E applicable to self-formed gravel rivers is seen to be 0.20. While this 

value is not exceedingly small it  is nevertheless small enough to render appropriate 
the expansion techniques used herein. 

The constant y can be evaluated from (28): 

7 = (~0s-'r)~/2(1 - r )  = 1.05. 

8. Towards rational regime relations for straight reaches 
The preceding analysis, combined with a resistance relation and a sediment transport 

relation, allows the derivation of regime relations for gravel rivers at bankfull or 
estimated 'dominant ' discharges; the latter is appropriate for streams entrenched 
well below their flood plains. 

Three major factors contribute to the resistance of gravel rivers: grain, dune and 
alignment (bar) resistance. The last can be neglected in a straight reach. Dunes in 
gravel tend to be poorly developed and often contribute little to the total resistance. 
It is reasonable to approximate the resistance to be entirely grain resistance with a 
roughness height k: = D,,. Integration of (12) over an infinitely wide channel with 
constant depth D then gives 

- 
U/u, = 2.5 In (1 1 D/D,,), ( 30) 

where Dis the vertically averaged velocity. 
This resistance relation was tested with the experimental and field data corre- 

sponding to moving gravel among the more than 6000 data sets contained in the 
compendium of Peterson & Howells (1973). Only data explicitly including the tern- 
perature and particle distribution gradation were selected. Aspect ratios d < 5 were 
not included, so that a division into wall and bed stress would not be required. D,, 
was calculated from the given D5,, the gradation and the assumption of a Gaussian 
distribution. The requirement Rp = (WgD,,)t D5,/v > 500 assured that all data were 
in the gravel range and the requirement u* D,,/v > 70 assured that the flow was 
hydraulically rough. The 278 data sets satisfying these conditions are plotted on 
figure 6 with (30); nearly all points are experimental rather than field. The closed 
circles correspond to natural bed material (9 = 1.65) and the open circles to 
artificial bed material (W =+= 1.65). While the considerable scatter associated with 
mobile beds is evident, the fit is reasonable. 
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FIGURE 6. Resistance relation for gravel beds. 

4 

The same data were used to determine a bed load relation. The Einstein sediment 
discharge q* = q/[(9?gD5,)*D5,]) where q = volumetric bed load discharge per unit 
width, is plotted against the Shields stress T *  = r/pWgD,, in figure 7 .  The data, 
which show a very steep relationship between q* and r * ,  were fitted by eye to the 
relation 

This equation, while representing a reasonable fit, is included primarily for illustrative 
purposes and could be replaced by a more reliable relation based on field data. 

The first regime relation can be obtained from the fact that the stress in (25) must 
be equal to the critical value at the junction point under bankfull or dominant con- 

q* = 11-2(7* - 0.03)4'57*-3. ( 3 1 )  

ditions: 
= T,*. 

This relation thus predicts depths on the bed region that are O ( s ) ,  or about 20%, 
above critical. Defining the parameters R = Dc/D, ,  and e = D,,/D,,, ( 3 2 )  can be 
accurately approximated by the power-law form 

R = 0*O553X-"O1 ( 3 3 )  

for 9 = 1.65 (natural material) and for the ranges 8 < R < 140, d > 15 and typical 
values of e (0.4-0.6). Equation ( 3 3 )  is the first regime relation. It is remarkable that 
this relation and relation ( 3 6 )  of part 1 should be similar, both relating R to S in- 
dependently of the aspect ratio, water discharge and sediment discharge, even though 
the mechanisms involved are entirely different. 

The second and third regime relations can be obtained by using (30) and ( 3 1 )  to 
calculate the total water discharge Q and volumetric sediment discharge Q, on a 
given cross-section. After some manipulation the approximate forms 

4 = 4*97R170S0'50B*(1 - 2 * 2 3 / d ) ,  

Q* = 1.02 x 10-5R0275B*(1 - 4 * 5 2 / d )  

( 3 4 )  

(35 )  

are obtained. Here 0 = Q/[(9gDs)4D:], Q* = Qs/[(9?gDs)~D:] and B* = BID,; the 
relations hold for the previously quoted restraints on R and d. It should be noted 
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FIGURE 7 .  Bed load relation for gravel beds. 

t,hat (35) is highly sensitive to both inaccuracies in the closure hypothesis and the 
choice of a load relation, and thus is subject t.0 more inaccuracy than the other two 
relations. 

I n  summary, t,he analysis allows for bankfull or dominant bed stress which exceeds 
the critical stress by about 20 yo, resulting in a low but non-vanishing rate of sediment 
transport. Qualitatively this corresponds well to the observations in 8 2. 

Implicit in the three regime relations is a relation for the bankfull width. If D,, 
and any two of the parameters D,, B, S, Q and Q, [except the pair D, and S, which is 
constrained by (33)] are known, the other three can be calculated. 
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9. Limitations of the analysis 
Natural rivers are extremely complicated phenomena and i t  would be facile to 

assume that the present analysis provides a complete and accurate picture of gravel 
rivers. To repeat, the regime relations (33)-(35) apply only to straight reaches with 
bed and banks composed of similar non-cohesive coarse gravel at bankfull or dominant 
discharge. Reaches approximately satisfying these conditions can be found in nature. 
However, it is much more typical to find complicating factors present. Among these, 
alignment variation and the presence of noticeable quantities of sand and fines, 
particularly in the banks, are important. 

Alignment variation includes the phenomena of meandering and braiding. It has 
been established through stability analysis that straight channels are usually subject 
to  instability leading to a meandering or braiding pattern (e.g. Callander 1969; 
Engelund & Skovgaard 1973; Parker 1976). The pattern, once established, implies a 
gradually shifting alignment, the gross characteristics of which are fairly stable when 
averaged over several bars in the downstream direction. 

The River Rheidol, Wales, illustrated in figure 8, provides an example of a river in 
coarse gravel which maintains a meandering pattern (Lewin 1972). Coarse gravel 
predominates in the bed and banks up to 30 cm of the top of the flood plain, which is 
covered with a thin layer of sand and organic material. Fines are nearly absent, from 
the channel and flood plain. Once initiated, meander bends migrate laterally and 
downstream, increasing their amplitude. This migration is fed by the shear stress 
distribution and secondary currents generated by the bend itself, which imply erosion 
a t  the Concave bank and deposition at the convex bank. When the meander amplitude 
reaches a certain limit, the bend is cut off during a flood and the process is re-initiated 
(figure 8). 

It is clear that  alignment variation cannot be the process that maintains the river 
width. It may be surmised, however, that the process of bar formation, superimposed 
over the mechanism described herein for maintaining the width of straight channels, 
might allow channels to migrate while maintaining coherent widths not greatly 
different from what would be found in a straight stream of the same channel slope. 
Thus the regime relations presented herein might be expected to provide crude 
estimates of reach-averaged channel properties of meandering or braiding streams a t  
bankfull discharge, 

The presence of noticeable quantities of sand and fines that are transported in 
suspension a t  high discharges can lead to the maintenance of substantially narrower, 
deeper channels, as discussed in the companion paper. This material falls out of 
suspension and concentrates wherever turbulence is weak, e.g. on the banks and flood 
plain. If i t  is available in sufficiently large quantities the level of the flood plain may 
be raised well above the highest horizon on which gravel lies, and the banks may be 
covered with this finer material. The mechanism for the maintenance of banks becomes 
a balance between deposition of material from suspension and erosion rather than the 
critical-stress condition used herein. 

Even if such material does not predominate on the banks, its presence may allow 
steeper banks and deeper, narrower channels by effectively increasing the angle of 
repose of the bank gravel, I n  particular, if bank gravel is imbricated in a matrix 
containing cohesive material (clay) and allowed to dry during low flow, i t  becomes 
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FIQVRE 8. Successive planforms of a reach of the Rheidol River, Wales, a meandering 
gravel stream. (a) Course in 1951. (b) Course in 1971. From Lewin (1972). 

cemented in place. Under such circumstances, the banks are less susceptible to erosion 
during moderate floods. When this effect is present, it is evidenced by steep-cut 
banks on the outside of bends. 

It is also important to note that many rivers with paved gravel beds a t  lower 
discharges may contain considerable quantities of material in the sand range available 
for transport as bed load, as Emmett (1976) has noted. In some cases, this finer load is 
dominant even though gravel sizes dominate in the bed and banks. It cannot be 
predicted from (31) or (35). 

Other complications are bank vegetation and erosional controls such as bedrock 
outcrops and valley walls. 
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River 
Athabasca 
Athabasca 
Athabasca 
Chilko 
Cariboo 
Quesnel 
Snake 
Clearwater 
Rheidol 

Source 

Neill (1973) 
Neill (1973) 
Neill (1973) 
Kellerhals (1963) 
Kellerhals (1963) 
Kellerhals (1963) 
Emmett (1977) 
Emmett (1977) 
Lewin (1977) 

Q (m3/s) 
2690 
2690 
2690 

159 
340 
419 

2600 
1450 

Unknown 

S 

0.00087 
0-0008 1 
0.00053 
0-00503 
0.00491 
0.00633 
0.001 
0.00032 
0.0025 

B (m) 
206 
244 
223 
45.7 
57.9 
61.0 

190 
140 
23.6 

D, 
(m) 
3.81 
3.81 
5.52 
1.68 
2.59 
2.44 
5.1 
5.2 
0.91 

TABLE 1. Basic data for gravel rivers at dominant discharge. 

DSO 
(mm) 

45 
45 
45 

142 
267 
216 

64 
64 
37 

DO0 

(mm) 
75 
75 
75 

254 
470 
381 
- 

The present analysis is thus seen to apply to a limiting case in which the width is a 
maximum and the depth is a minimum, corresponding to the absence of any material 
other than loose gravel. 

10. Comparison with data 
I n  order to determine whether a gravel-river reach is within the limitations of 

applicability of the regime relations derived herein, it is necessary to have a complete 
description, including information concerning alignment, cross-sectional shape, bed 
and bank material, bankfull or dominant discharge (and the method used to determine 
it), evidence of bed motion, etc. Two sources found to contain the requisite information 
are Kellerhals (1963) and Neill (1973). 

Neill (1973) has divided a 100 km length of the Athabasca River into three reaches. 
His table 3 summarizes average cross-sectional data for the straight portions of each 
of these reaches. The discussion in 3 2 indicates the applicability of the present analysis 
to these three reaches. The data used herein are summarized in table 1. The value 
D,, = 45mm has been assumed for all three reaches. Since Neill gives the average 
depth D rather than Dc, D, has been calculated from the cross-sectional profile derived 
herein, which implies 

(36) D/D, = 1 - 1*54Dc/B. 

The three reaches from Kellerhals (1963) listed in $ 3  also satisfy the criteria of 
evidence of bed mobility, bed and banks composed of coarse gravel, and only moderate 
deviation from straight alignment, and have been included in table 1. For these 
reaches D, was measured directly rather than calcuIated from 0. It should be noted 
that neither investigator has directly measured bed load in these reaches. 

Another useful set of data can be found at  a vastly differing scale. Wolman & Brush 
(1961) conducted 16 experiments in coarse sand (D5,, = 0.67mm) in which self- 
formed straight stable channels with vanishing suspended load and non-zero bed load 
were observed. These channels provide nearly exact models of gravel rivers in the 
sense of similitude. The only source of discrepancy is that u*, D,,/v is about 20, so the 
flow is not completely rough. Nevertheless, the discrepancy thus inherent in the use 
of (12) can be expected to be small. 

Expecting that the first two regime relations should provide reasonable estimates 
for channels with varying alignment, more data were selected from the compilation 
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FIGURE 9. Test of the first regime relation (33) (solid line). m, Kellerhals et al. (1972) ; 0, Kellerhals 

(1963); A, Neil1 (1973); D, Emmett (1977); +, Lewin (1977); 0 ,  Wolman &Brush (1961). 

of basic data on rivers in Alberta, Canada, due to Kellerhals et al. (1972). Of the reaches 
for which bankfull conditions are listed, forty-two have beds in which coarse gravel 
dominates. This list was narrowed to sixteen reaches, the others being eliminated for 
one or more of the following reasons: (a)  a major engineering work such as a dam, 
weir, canal intake, etc. existed in or near the reach (bridges were excepted); ( b )  gravel 
was not a major component of the bank material; (c) bedrock outcrops were present, 
or erodibility was limited; or (d )  the bankfull discharge return period exceeded 25 
years. Thus the sixteen reaches selected loosely fulfil the conditions postulated for the 
analysis herein, except that alignment variation manifested in the form of bar forma- 
tion associated with meandering and braiding is present. Field rather than map slopes 
were used where possible (see original reference). 

Data for the Clearwater and Snake Rivers, Idaho, were provided by Emmett (1977, 
private communication) and data for River Rheidol, Wales, were provided by Lewin 
(1977, private communication). The values are for bankfull conditions and are listed 
in table 1 .  The banks of the Rheidol are essentially gravel; those of the Clearwater 
and Snake are predominantly sand but contain gravel as well. 

The total data set comprises 41 reaches, with discharges ranging from 3-1 x lo-* 
cumecs to 5.4 x lo3 cumecs and centre depths ranging from 1 x 10-2m to 7.2 m. The 
first regime relation, (33), is tested directly in figure 9. The second regime relation, 
(34), can be cast in the form 

R = 0-866($/B*)0830 (37) 
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for appropriately large aspect ratios. It is tested by using the observed values of 0 
and B* to calculate R from (37) and then comparing this with the observed value of R, 
as is done in figure 10. While considerable scatter is present, rough confirmation of (33) 
and (34) is obtained. It is of interest to note that the laboratory data, although of a 
scale that differs vastly from that of the field data, fit in among the latter in the 
dimensionless plots. 

The load relation (35) has not been tested owing to its illustrative nature and to a 
lack of field data. 

These regime relations can be used to derive dimensionally homogeneous down- 
stream relations for the hydraulic geometry of gravel streams (Parker 1978). 

1 1. Conclusion 
The concept of lateral transfer of downstream momentum by turbulent diffusion 

embodied in the work of Lundgren &, Jonsson (1964) has been used together with 
singular perturbation techniques to explain the coexistence of stable banks and 
mobile beds in straight reaches of coarse gravel rivers. The analysis has been used to 
obtain rational regime relations for such reaches. 

Points which deserve further attention are the use of more accurate closure as- 
sumptions, a treatment of secondary currents in straight channels, and the inclusion 
of sediment gradation effects. 
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